skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fox, Geoffrey C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deep generative models have become ubiquitous due to their ability to learn and sample from complex distributions. Despite the proliferation of various frameworks, the relationships among these models remain largely unexplored, a gap that hinders the development of a unified theory of AI learning. In this work, we address two central challenges: clarifying the connections between different deep generative models and deepening our understanding of their learning mechanisms. We focus on Restricted Boltzmann Machines (RBMs), a class of generative models known for their universal approximation capabilities for discrete distributions. By introducing a reciprocal space formulation for RBMs, we reveal a connection between these models, diffusion processes, and systems of coupled bosons. Our analysis shows that at initialization, the RBM operates at a saddle point, where the local curvature is determined by the singular values of the weight matrix, whose distribution follows the Marc̆enko-Pastur law and exhibits rotational symmetry. During training, this rotational symmetry is broken due to hierarchical learning, where different degrees of freedom progressively capture features at multiple levels of abstraction. This leads to a symmetry breaking in the energy landscape, reminiscent of Landau’s theory. This symmetry breaking in the energy landscape is characterized by the singular values and the weight matrix eigenvector matrix. We derive the corresponding free energy in a mean-field approximation. We show that in the limit of infinite size RBM, the reciprocal variables are Gaussian distributed. Our findings indicate that in this regime, there will be some modes for which the diffusion process will not converge to the Boltzmann distribution. To illustrate our results, we trained replicas of RBMs with different hidden layer sizes using the MNIST dataset. Our findings not only bridge the gap between disparate generative frameworks but also shed light on the fundamental processes underpinning learning in deep generative models. 
    more » « less
    Free, publicly-accessible full text available August 12, 2026
  2. Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)
    As CERN approaches the launch of the High Luminosity Large Hadron Collider (HL-LHC) by the decade’s end, the computational demands of traditional simulations have become untenably high. Projections show millions of CPU-years required to create simulated datasets - with a substantial fraction of CPU time devoted to calorimetric simulations. This presents unique opportunities for breakthroughs in computational physics. We show how Quantumassisted Generative AI can be used for the purpose of creating synthetic, realistically scaled calorimetry dataset. The model is constructed by combining D-Wave’s Quantum Annealer processor with a Deep Learning architecture, increasing the timing performance with respect to first principles simulations and Deep Learning models alone, while maintaining current state-of-the-art data quality 
    more » « less
  3. MLCommons is an effort to develop and improve the artificial intelligence (AI) ecosystem through benchmarks, public data sets, and research. It consists of members from start-ups, leading companies, academics, and non-profits from around the world. The goal is to make machine learning better for everyone. In order to increase participation by others, educational institutions provide valuable opportunities for engagement. In this article, we identify numerous insights obtained from different viewpoints as part of efforts to utilize high-performance computing (HPC) big data systems in existing education while developing and conducting science benchmarks for earthquake prediction. As this activity was conducted across multiple educational efforts, we project if and how it is possible to make such efforts available on a wider scale. This includes the integration of sophisticated benchmarks into courses and research activities at universities, exposing the students and researchers to topics that are otherwise typically not sufficiently covered in current course curricula as we witnessed from our practical experience across multiple organizations. As such, we have outlined the many lessons we learned throughout these efforts, culminating in the need forbenchmark carpentryfor scientists using advanced computational resources. The article also presents the analysis of an earthquake prediction code benchmark while focusing on the accuracy of the results and not only on the runtime; notedly, this benchmark was created as a result of our lessons learned. Energy traces were produced throughout these benchmarks, which are vital to analyzing the power expenditure within HPC environments. Additionally, one of the insights is that in the short time of the project with limited student availability, the activity was only possible by utilizing a benchmark runtime pipeline while developing and using software to generate jobs from the permutation of hyperparameters automatically. It integrates a templated job management framework for executing tasks and experiments based on hyperparameters while leveraging hybrid compute resources available at different institutions. The software is part of a collection calledcloudmeshwith its newly developed components, cloudmesh-ee (experiment executor) and cloudmesh-cc (compute coordinator). 
    more » « less
  4. Abstract Classical molecular dynamics simulations are based on solving Newton’s equations of motion. Using a small timestep, numerical integrators such as Verlet generate trajectories of particles as solutions to Newton’s equations. We introduce operators derived using recurrent neural networks that accurately solve Newton’s equations utilizing sequences of past trajectory data, and produce energy-conserving dynamics of particles using timesteps up to 4000 times larger compared to the Verlet timestep. We demonstrate significant speedup in many example problems including 3D systems of up to 16 particles. 
    more » « less
  5. null (Ed.)
    The COVID-19 (COrona VIrus Disease 2019) pandemic has had profound global consequences on health, economic, social, behavioral, and almost every major aspect of human life. Therefore, it is of great importance to model COVID-19 and other pandemics in terms of the broader social contexts in which they take place. We present the architecture of an artificial intelligence enhanced COVID-19 analysis (in short AICov), which provides an integrative deep learning framework for COVID-19 forecasting with population covariates, some of which may serve as putative risk factors. We have integrated multiple different strategies into AICov, including the ability to use deep learning strategies based on Long Short-Term Memory (LSTM) and event modeling. To demonstrate our approach, we have introduced a framework that integrates population covariates from multiple sources. Thus, AICov not only includes data on COVID-19 cases and deaths but, more importantly, the population’s socioeconomic, health, and behavioral risk factors at their specific locations. The compiled data are fed into AICov, and thus we obtain improved prediction by the integration of the data to our model as compared to one that only uses case and death data. As we use deep learning our models adapt over time while learning the model from past data. 
    more » « less
  6. Today’s problems require a plethora of analytics tasks to be conducted to tackle state-of-the-art computational challenges posed in society impacting many areas including health care, automotive, banking, natural language processing, image detection, and many more data analytics-related tasks. Sharing existing analytics functions allows reuse and reduces overall effort. However, integrating deployment frameworks in the age of cloud computing are often out of reach for domain experts. Simple frameworks are needed that allow even non-experts to deploy and host services in the cloud. To avoid vendor lock-in, we require a generalized composable analytics service framework that allows users to integrate their services and those offered in clouds, not only by one, but by many cloud compute and service providers.We report on work that we conducted to provide a service integration framework for composing generalized analytics frame-works on multi-cloud providers that we call our Generalized AI Service (GAS) Generator. We demonstrate the framework’s usability by showcasing useful analytics workflows on various cloud providers, including AWS, Azure, and Google, and edge computing IoT devices. The examples are based on Scikit learn so they can be used in educational settings, replicated, and expanded upon. Benchmarks are used to compare the different services and showcase general replicability. 
    more » « less